Ancestor Relations in the Presence of Unobserved Variables

نویسندگان

  • Pekka Parviainen
  • Mikko Koivisto
چکیده

Bayesian networks (BNs) are an appealing model for causal and noncausal dependencies among a set of variables. Learning BNs from observational data is challenging due to the nonidentifiability of the network structure and model misspecification in the presence of unobserved (latent) variables. Here, we investigate the prospects of Bayesian learning of ancestor relations, including arcs, in the presence and absence of unobserved variables. An exact dynamic programming algorithm to compute the respective posterior probabilities is developed, under the complete data assumption. Our experimental results show that ancestor relations between observed variables, arcs in particular, can be learned with good power even when a majority of the involved variables are unobserved. For comparison, deduction of ancestor relations from single maximum a posteriori network structures or their Markov equivalence class appears somewhat inferior to Bayesian averaging. We also discuss some shortcomings of applying existing conditional independence test based methods for learning ancestor relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cause-selecting Charts based on Proportional Hazards and Binary Frailty Models (Quality Engineering Conference Paper)

Monitoring the reliability of products in both the manufacturing and service processes is of main concern in today’s competitive market. To this end, statistical process control has been widely used to control the reliability-related quality variables. The so-far surveillance schemes have addressed processes with independent quality characteristics. In multistage processes, however, the cascade...

متن کامل

Exact Bayesian Learning of Ancestor Relations in Bayesian Networks

Ancestor relations in Bayesian networks (BNs) encode long-range causal relations among random variables. In this paper, we develop dynamic programming (DP) algorithms to compute the exact posterior probabilities of ancestor relations in Bayesian networks. Previous algorithm by Parviainen and Koivisto (2011) evaluates all possible ancestor relations in time O(n3) and space O(3). However, their a...

متن کامل

برآورد نرخ بیکاری همراه با تورم غیرشتابان و تولید بالقوه

This paper tries to survey and estimate Non-Accelerating Inflation Rate of Unemployment (NAIRU) and potential output. It uses the unobserved components model to propose a new method. The model consists of Ukan Law equations and Philips Curve. It uses unobservable key economic variable in the form of unobserved random trends in an equation system of three variables namely unemployment, gross dom...

متن کامل

Improving envelopment in data envelopment analysis by means of unobserved DMUs: an application of banking industry

In data envelopment analysis, the relative efficiency of a decision making unit (DMU) is defined as the ratio of the sum of its weighted outputs to the sum of its weighted inputs allowing the DMUs to freely allocate weights to their inputs/outputs. However, this measure may not reflect a the true efficiency of a DMU because some of its inputs/outputs may not contribute reasonably in computing t...

متن کامل

A Theoretical Study of Y Structures for Causal Discovery

Causal discovery from observational data in the presence of unobserved variables is challenging. Identification of so-called Y substructures is a sufficient condition for ascertaining some causal relations in the large sample limit, without the assumption of no hidden common causes. An example of a Y substructure is A → C, B → C, C → D. This paper describes the first asymptotically reliable and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011